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We investigate the influence of high-order dispersion and nonlinearity on the propagation of ultraslow
optical solitons in a lifetime broadened four-state atomic system under a Raman excitation. Using a standard
method of multiple-scales we derive a generalized nonlinear Schrödinger equation and show that for realistic
physical parameters and at the pulse duration of 10−6 s, the effects of third-order linear dispersion, nonlinear
dispersion, and delay in nonlinear refractive index can be significant and may not be considered as perturba-
tions. We provide exact soliton solutions for the generalized nonlinear Schrödinger equation and demonstrate
that optical solitons obtained may still have ultraslow propagating velocity. Numerical simulations on the
stability and interaction of these ultraslow optical solitons in the presence of linear and differential absorptions
are also presented.
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I. INTRODUCTION

Electromagnetic wave propagation in highly resonant me-
dia has been a topic of much interest for a long time. Impor-
tant research achievements in the past few decades include
self-induced transparency �SIT� in two-level atoms �1,2�, op-
tical simultons in multilevel media �3,4�, lasing without in-
version �5�, phaseonium �6�, normal-mode �7�, and electro-
magnetically induced transparency �EIT� �8�. In SIT, an
optical field with sufficiently short pulse duration and high
light intensity is required so that the attenuation due to spon-
taneous radiation of atoms can be neglected. However, a
transparency mechanism under an electromagnetically in-
duced transparency �EIT� scheme is quite different. In a typi-
cal three-state �-type EIT scheme a quantum interference
effect induced by a control field makes the excited state of
atoms a dark state, and hence a weak probe field can propa-
gate with very low loss. It has been demonstrated that the
wave propagation under EIT configuration can possess many
striking features �9–16�. One of them is significant reduction
of group velocity �17,18�, which may lead to many new
physical effects and have important technical applications
�19�. Another feature is that Kerr nonlinearity of optical me-
dia can be largely enhanced through a cross-phase modula-
tion effect. This technique has been proposed for achieving a
large nonlinear phase shift �9,11� and some other nonlinear
optical processes under weak driving conditions. Based on
the resonantly large nonlinearity enhancement, the low ab-
sorption, and the ultraslow propagation property �8–21�, it
has been shown recently �22–24� that it is possible to pro-
duce a new type of optical soliton, i.e., ultraslow optical
soliton �USOS�, in highly resonant optical media. Because of
their robust nature and ultraslow propagating velocity, the
USOS may have the potential to be a promising candidate of
well-characterized, distortion-free optical pulses and hence

has important technological applications in optical and tele-
communication engineering.

In Ref. �22�, the USOS in a four-level system is studied
using a weak nonlinear analysis on Maxell-Schrödinger
�MS� equations that govern the evolution of optical field and
atomic amplitudes. A nonlinear Schrödinger �NLS� equation
governing the propagation dynamics of envelope of the op-
tical field based on the assumptions of negligibly small
higher order contributions is derived. In doing so, all time
derivative terms in calculating the nonlinear coupling terms
are neglected. It has been shown �24�, however, under certain
circumstances these higher order terms can have significant
effects to the propagation dynamics, resulting in further
group velocity correction, center frequency shift, and radia-
tions of the USOS, etc. Thus it is important to reexamine the
USOS in the four-state N-type scheme studied and investi-
gate the corresponding corrections to the much simplified
treatment.

In this work, we study soliton propagation in a four-state
N-type scheme. The motivation of the present study is stimu-
lated by the investigation of the stability of USOS reported
in Ref. �22� as a function of the pulse duration of the input
optical fields. Indeed, we have found that the ultraslow opti-
cal soliton becomes unstable when the pulse duration is
shortened with other parameters unchanged. This is sugges-
tive that the stability of slow or ultraslow optical solitons are
very sensitive to the nonadiabatic perturbations. By using a
standard method of multiple-scales we first derive a general-
ized NLS equation which includes the corrections due to
high-order dispersion and nonlinearity of the system. We
show that, for the pulse duration of 10−5 s as used in Ref.
�22�, these correction terms are indeed not significant. How-
ever, for the pulse duration of 10−6 or less and under the
same driving conditions, we show that these corrections be-
come significant and may not be treated simply as perturba-
tions of the NLS equation. Thus, in order to be able to cor-
rectly predict the formation and stable propagation of slow
and ultraslow optical solitons of shorter pulse durations, the*Electronic address: gxhuang@phy.ecnu.edu.cn
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generalized NLS equation must be used. We further present
soliton solutions of the generalized NLS equation derived
and demonstrate that these optical solitons are stable and can
propagate with very slow group velocities �25�. The paper is
arranged as follows. Section II describes the four-level
N-scheme. A generalized NLS equation is derived in Sec. III.
In Sec. IV the soliton solutions of the high-order NLS equa-
tion are given and the physical properties of these shape-
preserving fields are discussed. In Sec. V, we present numeri-
cal simulations that test the stability and interaction of
USOSs in the presence of high-order linear and differential
absorptions. Finally, Sec. V contains discussions and conclu-
sion of our results.

II. THE MODEL

We start with a lifetime broadened four-state atomic
system which interacts with a weak, pulsed probe field �pulse
duration �0� of center frequency �p / �2�� �coupling
�1�→ �3� transition� and two strong, continuous-wave �cw�
control fields of frequencies �B / �2�� ��2�→ �4� transition�
and �C / �2�� ��3�→ �2� transition�, respectively �see Fig. 1�.
The electric-field vector polarized in the x direction
can be written as E= x̂�Ep�x ,y ,z , t�ei�kpz−�pt�+EBei�kBz−�Bt�

+ECei�kCz−�Ct�+c.c.�, where x̂ is the unit vector in the
x-direction and kl=nl�l /c �l= p ,B ,C�; nl is the background
index of refraction at the frequency �l. The MS equations
governing the motion of atomic state amplitudes and time-
dependent probe field are �22�

�A1

�t
= i�p

*A3, �1a�

�A2

�t
= − �2A2 + i�C

* A3 + i�B
*A4, �1b�

�A3

�t
= − �i�p + �3�A3 + i�CA2 + i�pA1, �1c�

�A4

�t
= − �i�B + �4�A4 + i�BA2, �1d�

� �

�z
+

1

c

�

�t
��p − i

c

2�p
� �2

�x2 +
�2

�y2��p = i�13A3A1
*, �1e�

where Aj is the probability amplitude of the atomic state �j�
�j=1–4� satisfying the conservation condition 	l=1

4 �Al�2=1.
2�p, 2�B, and 2�C are the Rabi frequencies for correspond-
ing transitions. 	i=2�i is the decay rate of level �i�
�i=2,3 ,4�. �13=2�Na�p�D13� / �
c� with Na being the par-
ticle number density and D31 being the dipole moment for
the transition from �1�→ �3�. In deriving Eqs. �1a�–�1e� we
have used the slowly varying envelope approximation for the
pulsed probe field and defined two one-photon detuning
�B=�42−�B and �p=�31−�p. Additionally, we have as-
sumed �21=�21+�C−�p=0, which means that a two-photon
resonance is always maintained.

Before solving the MS Eqs. �1a�–�1e� by using an ap-
proach based on the method of multiple-scales �see Sec. III�,
we first examine the linear properties of the system.
These linear properties are the main contributors to
pulsed spreading and attenuation. To achieve this, we
assume that the probe field is weak so that the atomic
ground state �1� is not depleted, i.e., A1
1. In this
case one can make a linear analysis on Eqs. �1a�–�1e�.
Taking �p and Aj �j=2,3 ,4� as being proportional to
exp�i�k���z−�t��, one can easily get the linear
dispersion relation of the system, which is given by
Ref. �22� k���=� /c−�13Dp��� /D���, where Dp���= ��B�2
− ��+ i�2���−�B+ i�4� and D���= ��B�2��−�p+ i�3�
+ ��C�2��−�B+ i�4�−��+ i�2���−�p+ i�3���−�B+ i�4� �26�.
A general linear solution for �p and Aj �j=2,3 ,4� can be
obtained by Fourier superimposing different frequency com-
ponents. The group velocity and group-velocity dispersion of
a pulsed probe field can be obtained by Taylor-expanding the
linear dispersion relation k��� around the center frequency
�p �27�, giving k���=K0+K1�+K2�2 /2+¯ with Kj

= ��� jk��� /�� j���=0�j=0,1 ,2 , . . . �. Here, K0=�+ i� /2 gives
the phase shift � per unit length and absorption coefficient �
of the probe field, 1 /K1 is related to the group velocity, and
1/K2 describes the group velocity dispersion �i.e., pulse
spreading�. For probe field with a Gaussian input form, i.e.,
�p�0, t�=�p�0,0�exp�−t2 /�0

2�, we have �28�

�p�z,t� =
�p�0,0�


b1�z� − ib2�z�
exp�iK0z −

�K1z − t�2

�b1�z� − ib2�z���0
2� ,

where b1�z�=1+2z Im�K2� /�0
2 and b2�z�=2z Re�K2� /�0

2. The
above equation clearly shows that dispersion and dissipation
effects contribute to the probe field spreading and attenua-
tion, as expected.

III. ASYMPTOTIC EXPANSION AND A HIGH-ORDER NLS
EQUATION

In this section, we apply a perturbation theory to solve
Eqs. �1a�–�1e� and search for the formation and propagation
of a shape-preserving probe pulse in the four-state system.
We first note that nonvanishing one-photon detuning is nec-
essary not only to introduce group-velocity dispersion but
also to induce self-phase �when ��p�0� and cross-phase

FIG. 1. The energy-level diagram and excitation scheme of a
lifetime broadened four-state atomic system interacting with a
weak, pulsed probe field of center frequency �p / �2�� and two
strong, cw control fields of frequencies �B / �2�� and �C / �2��.
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�when ��B�0� modulation effects which can provide effec-
tive means to balance the detrimental dispersion effect, lead-
ing to stable formation and propagation of solitons �29�. To
make the nonlinear effect in the system significant, one
should increase the intensity of the probe field and hence the
population of the ground state �1� will be depleted. To get a
quantitative description of the formation and dynamics of an
ultraslow optical soliton in the system, as a first step we
derive a nonlinear envelope equation that describes the evo-
lution of the probe field envelope by employing a standard
method of multiple-scales �30�. We first make the following
asymptotic expansion Aj =	n=0


 �nAj
�n��j=1,2 ,3 ,4� and �p

=	n=1

 �n�p

�n�, where � is a small parameter characterizing the
small population depletion of the ground state. To obtain a
divergence-free expansion, all quantities on the right-hand
side of asymptotic expansion are considered as functions of
the multiscale variables zl=�lz �l=0–3�, tl=�lt �l=0,1�,
x1=�x, and y1=�y. Substituting the expansions and the mul-
tiscale variables into Eqs. �1a�–�1e�, we obtain a chain of
linear but inhomogeneous equations on Aj

�n� and �p
�n�, which

can be solved order by order.
To the leading order, O���, the solution of Eqs. �1a�–�1e�

is just that obtained in the linear regime, described in the last
section. Since we are interested in the evolution of a pulsed
probe field we take �p

�1�=F exp�i��, where �=k���z0−�t0

and F is a yet to be determined envelope function depending
on the slow variables x1 ,y1 , t1 and zj �j=1,2 ,3�.

To the second order, O��2�, a divergence-free solution re-
quires one set

i� �F

�z1
+

1

Vg

�F

�t1
� = 0, �2�

where Vg=1/K1 is the group velocity of the envelope F.
To the third order, O��3�, the solvability condition yields

the NLS equation

i
�F

�z2
−

K2

2

�2F

�t1
2 +

c

2�p
� �2

�x1
2 +

�2

�y1
2�F

− W exp�− �1z2�F�F�2 = 0, �3�

with �1=�−2�, and

W = −
�13Dp��Dp�2 + ��C�2��� − �B + i�4�2 + ��B�2��

D�D�2
. �4�

Equation �3� without the diffraction term �i.e., the third term
on the left-hand side �lhs�� was obtained in Ref. �22� using
an approach that relies on the zeroth order Taylor expansion
of the nonlinear term. It has been shown �24� that such a
simple technique is often oversimplified when treating highly
resonant systems. Indeed, many interesting effects and phe-
nomena can and will raise from the contributions not in-
cluded in such a simple treatment.

Our goal is to study the influence of high-order nonlinear
and dispersion effects on the evolution of a pulsed optical
field. For this purpose we must go beyond the NLS approxi-
mation, i.e., Eq. �3�, which is a third order equation. The
fourth order equations, i.e., O��4�, can be obtained from the
asymptotic expansion using the solutions of the first, second,

and third order equations. By a detailed calculation, we get
the solvability condition for fourth order equations

i
�F

�z3
− i

K3

6

�3F

�t1
3 − i�1 exp�− �1z2�

�

�t1
��F�2F�

+ i�2 exp�− �1z2�
��F�2

�t1
F = 0, �5�

where

�1 = − �13
Dp

D
�q1 + q1

*�

−
Dp

2 + ��C�2��� − �B + i�4�2 + ��B�2�
DpD

W ,

�2 = − �13
Dp

D
�2q1 + q1

*�

−
Dp

2 + ��C�2��� − �B + i�4�2 + ��B�2�
2DpD

W ,

with

q1 = −
1

�13

� − �B + i�4

D
��� − �p + i�3�� 1

Vg
−

1

c
�

+ �k −
�

c
��*

+
1

�13

Dp

D
� 1

Vg
−

1

c
�*

+
1

�13D
�− �� + i�2�

���� − �p + i�3�� 1

Vg
−

1

c
� + �k −

�

c
��

+ ��C�2� 1

Vg
−

1

c
� − �13

��C�2�� − �B + i�4�
D

�*

,

where the asterisk represents a complex conjugate.
Combining Eqs. �2�, �3�, and �5�, we obtain

i
�F

��
−

K2

2

�2F

��2 +
c

2�p
� �2

�x1
2 +

�2

�y1
2�F − W exp�− �1z2�F�F�2

+ i�−
K3

6

�3F

��3 − �1 exp�− �1z2�
�

��
��F�2F�

+ �2 exp�− �1z2�
��F�2

��
F� = 0, �6�

where �=z2=�2z and �= t1−z1 /Vg=��t−z /Vg�. Equation �6�
is a generalized NLS equation including diffraction, third-
order linear dispersion and noninstantaneous Kerr nonlinear-
ity. Such an equation also appears in the study of pulse
propagation in nonlinear optical fibers �33�.

IV. ULTRASLOW OPTICAL SOLITON SOLUTIONS OF
THE GENERALIZED NLS EQUATION

The generalized NLS equation derived in the last section
has complex coefficients and hence is generally not inte-
grable. However, if a realistic set of parameters can be found
so that the imaginary part of these coefficients can be made
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small in comparison with the corresponding real parts, then it
is possible to get a shape-preserving, localized solution that
can propagate for an extended distance without significant
attenuation and distortion. In this case Eq. �6�, when return-
ing to original variables, reduces to �Zr=Re�Z� where Z is a

general symbol that represents W̃, K, �̃, etc.�

i� �

�z
+ K0i�U −

K2r

2

�2U

��2 +
c

2�p
� �2

�x2 +
�2

�y2�U − W̃r�U�2U

+ i�−
K3r

6

�3U

��3 − �̃1r
�

��
��U�2U� + �̃2r

��U�2

��
U�

− K1i
�U

��
= 0, �7�

where we have set �=0 �31�, �= t−K1rz= t−z /Vgr, and
�p=U exp�iK0rz�. The explicit expressions of the coeffi-
cients of Eq. �7� have been given in the Appendix.

For convenience of the following discussions, we write
Eq. �7� into the following dimensionless form:

i
�u

�s
+

�2u

��2 + 2�u�2u

= − i�d0u − d1
��u�2u

��
− d2u

��u�2

��
− d3

�3u

��3�
+ d4

�u

��
− d5� �2u

�x�2 +
�2u

�y�2� , �8�

where s=−z / �2LD�, �=� /�0, �x� ,y��= �x ,y� /R�, and
u=U /U0, LD=�0

2 /K2r is the characteristic dispersion length,

LNL=1/ �U0
2W̃r� is the characteristic nonlinearity length, R�

is the beam radius, and U0= �1/�0�
K2r /W̃r is the typical
Rabi frequency of the probe field �32�. The dimensionless
coefficients in Eq. �8� are given by dj =2LD /Lj �j=0–5�,
where L0=1/K0i, L1=�0

3W̃r / ��̃1rK2r�, L2=−�0
3W̃r / ��̃2rK2r�,

L3=6�0
3 /K3r, L4=�0 /K1i, and L5= �2�p /c�R�

2 are the charac-
teristic lengths of linear absorption, nonlinear dispersion, de-
lay in nonlinear refractive index, third-order dispersion, and
differential absorption and diffraction, respectively.

We note that if parameters of the system are chosen to
make Lj �j=0–5� much larger than LD, i.e., dj �1, the terms
on the right-hand side �rhs� of Eq. �8� are high-order ones
and can be taken as a perturbation. In this situation Eq. �8�,
when these perturbation contributions are neglected, reduced
to the NLS equation given in Ref. �22�.

In the present work, we consider an important situation
where Lj are of the same order as LD in addition to the
requirement of the much smaller imaginary part of the coef-
ficients of Eq. �6� comparing with the corresponding real
part. In this case the terms on the rhs of Eq. �8� become
significant and may not be treated as perturbations. One of
the possibilities that can lead to such a situation is the case of
shorter initial input pulse. Physically, reducing pulse duration
while keeping probe pulse amplitude constant will lead to
less effective third-order phase modulations. Note that soli-
ton formation is strongly dependent on the effectiveness of
these phase modulations which provide the necessary coun-

terbalance effects to cancel the detrimental dispersion ef-
fects. Thus weakened phase modulation effects will lead to
unbalanced dynamics, resulting in unstable propagation of
ultraslow solitons. As we will show below, attention must be
given to the significance of these higher order terms as the
pulse duration is reduced.

To demonstrate the degree of importance of various
terms on the rhs of Eq. �8� we consider the following set
of experimentally relevant parameters suitable to a
cold four-state atomic system: 	2=2�2�2.0�103 s−1,
	3=2�3�1.2�108 s−1, and 	4=2�4�2.5�108 s−1. We
take �13=1.0�109 cm−1 s−1, 2�B=3.2�107 s−1,
2�C=6.0�107 s−1, �p�−1.0�109 s−1, �B=1.2�109 s−1

�34�, �p=c /�p=0.8�10−4 cm, and R�=0.1 cm. In Fig. 2 we
have plotted the coefficients dj �j=0–5� as functions of pulse
duration �0. From the figure we see that with the above
set of parameters and for longer pulse duration, say
�0�1.0�10−5 s−1, the linear and differential absorptions,
represented by d0 and d4, respectively, become relatively im-
portant. Correspondingly, the effects due to the nonlinear dis-

FIG. 2. The curves d0 and d4 �d1, d2, and d3� vs pulse-width �0

in panel �a� �panel �b��.
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persion, delay in nonlinear refractive index, and third-order
dispersion, represented by d1, d2, and d3, respectively, be-
come negligible. Thus, for pulse duration �0�10−5 s−1, one
has ��B,C�0��100 and Eq. �3� is sufficiently accurate. How-
ever, if one reduces the probe pulse duration only, the rela-
tive importance of these two groups of effects will be re-
versed. This is clearly shown in the region of �0�10−6 s−1

where one has ��B,C�0��10. In this region one must use the
following generalized NLS equation

i
�u

�s
+

�2u

��2 + 2�u�2u + i�d1
��u�2u

��
+ d2u

��u�2

��
+ d3

�3u

��3� = 0

�9�

to describe the evolution of the probe pulse. Note that all
terms in the above equation have the same order of magni-
tude and thus must be treated on equal footing �35�.

Equation �9� is well known in nonlinear fiber optics �33�.
Various exact soliton solutions can be found using different
techniques �36–39�. A single bright soliton solution is given
by, after returning to original variables,

�p�z,t� =
U0


2d3
�6�� + 3�2 − 2��

3c1 + c2
�1/2

� sech�
� + 3�2 − 2�

d3�0
�t −

z

Vg
H��exp�i��z,t�� ,

�10�

where c1=d1 / �2d3�, c2=d2 / �2d3�, �= �3c1+2c2−3� /
�6�c1+c2��, and � is a free real parameter relating
with the soliton velocity. The phase function
is given by ��z , t�=�t / �d3�0�+ �Kr−� / �d3�0Vg�
− ���+3�2−2���1−3��+�3−�2� / �2LDd3

2��z. The condi-
tions allowing the existence of the bright soliton solution
�Eq. �10�� are ��1/3 and �+3�2−2 � being positive. By
taking the numerical values of the parameters of the system
given above, these conditions can easily be satisfied. Note
that Eq. �10� is a nonperturbation solution of Eq. �9�, i.e., it
cannot be obtained using perturbation theory by taking dj
�j=1,2 ,3� as small parameters.

The quantity Vg
H in Eq. �10� is the propagating velocity of

the bright soliton, which is determined by

1

Vg
H =

1

Vg
−

��0

2LDd3
. �11�

Choosing �0=3.2�10−6 s and �=0.5 we get Vg
H /c

=3.6�10−5. Thus the soliton shown in Eq. �10� indeed trav-
els with very slow group velocity. This is an USOS based on
the exact solution of the generalized NLS equation, Eq. �9�.
The average flux of energy over a period of the carrier-wave
can be easily obtained. For the bright soliton given by Eq.
�10� one has

P̄ = P̄max sech2�
� + 3�2 − 2�

d3�0
�t −

z

Vgr
H �� , �12�

where the peak power is given by

P̄max = �0cnpS0�
/D31�26K2r�� + 3�2 − 2��

d3
2�0

2W̃r�3c1 + 2c2�
, �13�

where S0 and np are the cross-section area and refractive
index of the probe laser beam. Note that the peak power is
directly proportional to the dispersion coefficient K2r and
inversely proportional to the square of the pulse duration

�0 as well as the self-phase modulation coefficient W̃r.
Using the above numerical example and taking
D31=1.2�10−27 cm C and S0=1.0�10−2 cm2, we obtain

P̄max=3.6�10−2 mW. Consequently, very low input power
for the probe field is needed for generating the ultraslow
optical soliton �10�.

V. NUMERICAL SIMULATION

In order to test the stability of the USOS solutions of the
generalized NLS Eq. �9� and to extend the analytical result
given in the last section to include the influence due to the
linear and differential absorptions, we have numerically in-
vestigated Eq. �8�. In our simulations the soliton solution
�10� is naturally taken as an initial condition. The space and
time derivatives in Eq. �8� are performed by using a pseu-
dospectral method �as used in Ref. �40�� and a fourth-order
Runge-Kutta method for superior conservation of energy and
other invariants, respectively. The parameters of the system
are taken the same as those given above.

Shown in Fig. 3 is the evolution of a bright USOS in the
presence of linear and differential absorptions, in addition to
the higher order terms of Eq. �8� described there. In the fig-
ure we have plotted the relative intensity of the probe field
�in terms of corresponding Rabi frequency�, ��p /U0�2, as a
function of � /�0 and z / �2LD�. We found that the linear ab-
sorption �represented by the term −id0u in Eq. �8�� makes the
soliton undergo a deformation, i.e., its amplitude �width� de-
creases �increases�; while the differential absorption �repre-
sented by the term d4�u /�� in Eq. �8�� leads to an opposite
effect. As a result, the detrimental effect due to −id0u can be
partially or completely canceled out, leading to stable soliton
propagation up to z / �2LD�=1.5. Note that the dispersion

FIG. 3. The evolution of a single bright USOS in the presence of
the linear and differential absorptions. The soliton solution �10� is
taken as an initial condition in the computation. The soliton can
propagate stably up to z / �2LD�=1.5.
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length LD, which is equal to the nonlinear length LNL, of our
system is 1.8 cm. Thus the soliton can propagate in the
sample without apparent deformation up to z=5.4 cm. After
this distance a small radiation from the soliton appears.

In Fig. 4 we have provided the numerical result on
the interaction between two USOSs of shorter pulse
duration with higher order terms included. The initial
pulse used in integrating Eq. �8� consists of two USOSs
with different amplitude and group velocity. We take
�0=4.0�10−6 s−1 and �=0.5 ��=0.8� in Eq. �10�
and all other parameters are the same as those used in
the simulation of the single USOS �Fig. 3�. Thus the initial
pulse reads 0.7 sech�1.2�� /�0+2.0��exp�0.8�� /�0+2.0��
+1.1 sech�2.0�� /�0−2.0��exp�0.8�� /�0−2.0��, where the
separation is T0=4.0. We can see that the collision between
two solitons is almost elastic and there appears a small phase
�position� shift for each soliton after the collision. As the
relative phase in this case is approximately �, a repulsive
interaction can be seen in the collision.

In addition, we have also investigated other interactions
between two neighboring pulses with the higher order terms
included. The initial pulse consists of two USOSs with
equal amplitudes and the same group velocity. We take
�=0.5 in Eq. �10� and all other parameters are the
same as those used in the simulation of the single USOS
�Fig. 3�. We assume that the initial constant phase of
the two USOSs are �1 and �2. Thus the initial
pulse reads 0.6 sech�0.9�� /�0+3.5��exp�0.6� /�0+�1�
+0.6 sech�0.9�� /�0−3.5��exp�0.6� /�0+�2�, where the sepa-
ration is T0=7.0. Shown in Fig. 5 is the evolution plot of the
neighboring USOSs with relative phase ��=�1−�2=0
�panel �a�� and ��=� �panel �b��. From the figure we can see
that the interaction between the neighboring USOSs gives
rise to unequal amplitude, which depends on the relative
phase �shown in the insert figure of panel �b��. However, the
separation of the USOSs keeps almost constant, which is
different from the case for the NLS equation �33�. Therefore
we may infer that the combined effects of high-order disper-
sion and nonlinearity can restrict the interaction between the
neighboring USOSs to some extent. This is advantageous for
increasing the information bit rate in optical soliton commu-
nications �33�.

VI. DISCUSSION AND CONCLUSION

As is well known, slowly varying envelope approximation
�SVEA� has been widely used in the study of wave propaga-
tion in nonlinear optical media �41�. Based on this technique,
many important physical processes, such as wave-wave reso-
nant interaction, can be described in a very transparent way;
and some interesting nonlinear localized phenomena, includ-
ing spatial and temporal optical solitons, are predicted and
found experimentally �33,41�. The SVEA is essentially a
weak nonlinear and weak dispersion theory. It is applicable
under the conditions of a weak light intensity and the power
spectrum of optical field being concentrated in the neighbor-
hood of some discrete frequencies. Thus one may use a per-
turbation expansion for the optical field and remove fast
space and time variables, resulting in a considerable simpli-
fication for the problem under study. Usually, with this
method one obtains a simple model in the form of one or

FIG. 4. The collision between two solitons is almost elastic and
there appears a small phase �position� shift for each soliton after the
collision.

FIG. 5. The separating evolution plot of the neighboring USOSs
with different relative phase ��=�1−�2. Panel �a� gives the plot
with ��=0 while panel �b� gives the plot with ��=�. The inset
figure shows ��p /U0�2 vs �� at z / �2LD�=1.5, the solid line repre-
sents the left soliton while the dotted line represents the right one.
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several envelope equations. In recent years, the SVEA has
been reformulated in a more standard and transparent way by
using the method of multiscales �30,41,42�.

It must be pointed out that any envelope equation ob-
tained by the SVEA or the method of multiple-scales is valid
only in some parameter regimes and for some space and time
scales. This key point was illustrated clearly in Refs.
�33,41,42� for optical pulse propagation in optical communi-
cations. Needless to say, the validity domains for the NLS
model, i.e., Eq. �3� �see also Ref. �22�� and the generalized
NLS model obtained in our present work, i.e., Eq. �6�, are
different. Using the parameters given in Sec. IV, the
NLS model is valid for the pulse duration �0 around
1.0�10−5 s−1. In this situation the nonlinear length LNL and
the dispersion length LD are 18.0 cm �32�. The other lengths
Lj �j=1–3� characterizing high-order dispersion, noninstan-
taneous Kerr nonlinearity are much larger than LNL and LD
and hence can be safely neglected. In this sense the NLS
equation is a suitable model for the solitonlike nonlinear
propagation in the system. However, if �0 is less than
1.0�10−5 s−1, the NLS model is broken down and one must
include the effects due to the noninstantaneous Kerr nonlin-
earity and high-order dispersion. In our present work, differ-
ent from Ref. �22�, we have considered the nonlinear propa-
gation for a shorter pulse with duration around
3.2�10−6 s−1, and derived a modified NLS model, i.e., the
generalized NLS Eq. �6�, by employing the standard method
of multiple-scales �30,41,42�. The noninstantaneous Kerr
nonlinearity and the third-order dispersion of the system �43�
have been included into the model in a standard and system-
atic way �44�.

For a better confirmation of our approach, we have made
an additional numerical simulation by starting directly from
the MS equation �1�. For a comparison between the NLS
description, i.e., Eq. �3� �see also Ref. �22��, and the gener-
alized NLS description, i.e., Eq. �6�, we have chosen two
different initial conditions. One of them is to use the single-
soliton solution of the NLS Eq. �3�, which has the form
U0 sech��t−z /Vgr� /�0�exp�i�K0r−1/ �2LD��z�. The other one
is to use the single-soliton solution of the generalized
NLS Eq. �6�, given by Eq. �10�. In both cases we take
�0=3.2�10−6 s−1 and other parameters are the same as those
in Fig. 3. The results of the simulation are shown in panels
�a� and �b� of Fig. 6, respectively. We see that an apparent
deformation occurs for the NLS soliton �Fig. 6�a�� after
propagating to z=5.0 cm. After that distance, the amplitude
�width� of the soliton decreases �increases� and the soliton
tends to split due to the effects of third-order dispersion and
instantaneous Kerr nonlinearity. However, the soliton of the
generalized NLS equation �Fig. 6�b�� is only affected by the
linear and differential absorption and hence can propagate
for a longer distance. These simulation results demonstrate
again that the NLS equation �3� is not appropriate when the
duration of the probe pulse is shortened to �0
10−6 or less.
In this regime, one must use the generalized NLS equation
�6� to describe a solitonlike pulse propagation in the system.

In conclusion, we have investigated the influence of high-
order dispersion and nonlinearity on the propagation of ul-
traslow optical solitons in a lifetime broadened four-state
atomic system under a Raman excitation. By employing a

method of multiple-scales we have derived a generalized
nonlinear Schrödinger equation and showed that for a realis-
tic atomic system under suitable excitations the effects of
third-order linear dispersion, nonlinear dispersion, and delay
in nonlinear refractive index may be significant and therefore
must be treated from a nonperturbative viewpoint. We have
shown that the significance of these higher order terms be-
come increasingly important when the pulse duration of the
probe field is reduced. Based on the exact soliton solutions of
the generalized NLS equation we have also demonstrated
that it is possible to produce a new type of ultraslow optical
soliton with group velocity on the order of 10−5 c in the
four-state system. We note that such optical solitons are dif-
ferent from those found in Ref. �22� because the action to

FIG. 6. The evolution of soliton for two different initial condi-
tions. The probe pulse duration is taken as �0=3.2�10−6 s−1 and
the value of �0 is 1.0�106 s−1. In panel �a� �panel �b��, the initial
condition is the single-soliton solution of the NLS equation �3� �the
high-order NLS equation �6��. The dotted line denotes the initial
pulses, the dashed line denotes the pulses at z=5.0 cm, and the solid
line represents the pulses at z=8.0 cm. We see that there is an
apparent deformation for the NLS soliton �shown in panel �a��
while no apparent deformation for the soliton of the generalized
NLS equation �shown in panel �b��.
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balance the detrimental dispersion effects is due to quantities
of different physical origins resulted from different nonadia-
batic contributions. We have also carried out numerical simu-
lations on the stability and interaction of ultraslow optical
solitons with linear and differential absorptions being in-
cluded. These numerical simulations show that formation
and stable propagation of this new type of ultraslow optical
solitons can be achieved in a four-state N type medium for an
extended propagation distance.
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APPENDIX: EXPRESSIONS OF THE COEFFICIENTS IN
EQ. (7)

The expressions of the coefficients in the generalized NLS
Eq. �7� are given by

K0i =
�13��B�2���B�2�3 + ��C�2�4�

D̃2
, �A1�

K2r =
2�13

D̃
+

2�13���B�2�p + 2��B�2�B + ��C�2�B − �p�B
2�

D̃2

−
2�13��B�2���B�2 + ��C�2 − �p�B�2

D̃3
, �A2�

W̃r = − �13
��B�2���B�4 + ��C�2���B�2 + �B

2��

D̃3
, �A3�

K3r =
6�13�− 2��B�2 − ��C�2 + 2�p�B + �B

2�

D̃2
+

6�13���B�2 + ��C�2 − �p�B��− 3��B�2�B − ��C�2�B − 2��B�2�p + �p�B
2�

D̃3

+
6�13��B�2���B�2 + ��C�2 − �p�B�3

D̃4
, �A4�

�̃1r = − 2�13
��B�2

D̃
q̃1 −

��B�4 + ��C�2��B
2 + ��B�2�

��B�2D̃
W̃r, �A5�

�̃2r = − 3�13
��B�2

D̃
q̃1 −

��B�4 + ��C�2��B
2 + ��B�2�

2��B�2D̃
W̃r, �A6�

K1i =
2�13��B�2�B�3

D̃2
+

1

D̃4
�2�13��B�2���B�2 + ��C�2 − �p�B����B�4�p�3 + ��B�C�2��p�4 + �B�3� + ��C�4�B�4�� , �A7�

q̃1 =
��B�2 + ��C�2 − �p�B

�13D̃
� 1

Vgr
−

1

c
� +

���B�2 + ��C�2��B

D̃2
�A8�

with D̃=−��B�2�p− ��C�2�B and Vgr=c / �1+c�13���B�4+ ��B�C�2+ ��C�2�B
2� / D̃2�. Note that in order for simplifying the ex-

pressions the assumption �2��B ,�C ,�3 ,�4 is used.
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